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During sheet metal forming operations, internal damage occurs as a result of 
nucleation, growth and coalescence of cavities around particles, inclusions or 
second phase. In this work, this phenomenon is experimentally studied by relative 
density change measurements and scanning electron microscope observations in a 
dual-phase steel sheet. It is observed that the distribution of cavities is not hom- 
ogeneous. A model of plastic flow localization is proposed taking account of a 
non-uniform void distribution. The results show a substantial reduction in the form- 
ability of the sheet as well as anisotropic effects due to the heterogeneous distribu- 
tion of voids. 

1. I n t r o d u c t i o n  
The formability of a sheet metal is directly 
related to its ability to plastically deform. The 
material parameters controlling the plastic 
deformation can be considered on two levels: (a) 
a macroscale, where constitutive parameters are 
derived from the overall material behaviour 
such as strain-hardening, strain rate hardening 
and plastic anisotropy; and (b) a microscale, 
where structural parameters are physically 
determined from an understanding of the 
different mechanisms involved in a plastic defor- 
mation: roughness, grain size, texture, disloca- 
tions microstructure, inclusions content, inter- 
nal damage etc. 

Although it is obvious that these two classes 
of parameters are strongly related, the relation- 
ships between them are not yet clear. Our 
approach, as usually done, separates the in- 
fluence of each parameter. The plastic behaviour 
of the material and more precisely the onset of 
plastic instability will be described by the con- 
stitutive parameters, and only one structural 
parameter will be considered: internal damage. 

2. Internal damage 
2.1. Method of analysis 
In sheet metal forming, the industrial materials 
usually present a high content of particles: inclu- 
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sions, precipitates and second phases. Plastic 
deformation will generally induce void nuclea- 
tion around the particles during any forming 
process including cold rolling, deep-drawing and 
stretch forming. Therefore only volumic internal 
damage related to particles will be taken into 
account; the analysis will not be valid for planar 
defects such as fatigue cracks, which are not 
observed in the forming processes considered. 
Two main damage mechanisms have been 
observed [1]: (a) by decohesion of the particle- 
matrix interface (mainly for equiaxed particles); 
and (b) by failure of the particle (mainly for 
elongated particles). 

In commercial materials, this classification 
into two mechanisms may not be obvious as 
particles can break and give decohesion at the 
same time, or two different mechanisms can be 
observed on two classes of particles of different 
morphology. 

One effect of the internal damage is to reduce 
the plastic formability by accelerating the plastic 
instability process. This phenomenon will then 
lead to ductile fracture by excessive growth and 
coalescence of the cavities. 

2.2. Measurements 
Different experimental phenomena have been 
proposed and used to quantify the internal 
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Figure 1 Damage by decohesion between the matrix and an alumina particle in a dual-phase steel sheet: (a) before 
ion-polishing, (b) after ion polishing. 

damage: Young's modulus changes [2], acoustic 
emission, hydrogen diffusion, X-ray or neutron 
diffraction. In this work we have used two other 
complementary techniques: relative density 
change measurements , and microscopic observa- 
tions. The relative density change measurements 
are carried out using the Ratcliffe technique [3] 
which consists in weighing a deformed and a 
reference sample alternatively in the air and in a 
liquid. The accuracy of this measure is of the 
order of +5  x 10 -5. The metallurgical 
observations are carried out using a scanning 
electron microscope. The samples are prepared 
by mechanical and subsequent ion polishing [4, 
5]. This technique is necessary to obtain reliable 
observations as shown in Fig. 1. 

The density method gives an accurate value of 
the volumic growth of the cavities. This accuracy 
is obtained by relative measurements which do 
not allow one to determine the absolute value of 
the reference sample, for example the initial 
damage f o r  a reference undeformed sample. 
Furthermore, no information is obtained on the 
physical aspect of damage. Conversely, the 
microscopical observations give physical details: 
damage mechanism; shape, size and distribution 
of the cavities; chemical nature of the particles 
responsible for void formation. Accuracy is very 
difficult to achieve on these observations as it 
statistically requires a significant number of 
measurements. Furthermore, for complex void 
shapes the transfer from surface observation to 
volumic parameters is not easy if not impossible. 

The combination of these two techniques is 
powerful: it gives complementary parameters in 
perfect agreement [6]. Since it can be shown 
from the stereological laws [7] that Cv = Cs 
where C v is the void volume fraction and C~ the 

surface fraction of voids intercepted by a sec- 
tion, the following relationship can be drawn [8]: 

Ad 
- C v - C v 0  = C ~ - C ~  o (1) d 

where - Ad/d is the relative density change 
between a deformed and a reference sample 
(subscript 0). 

As an example of the use of these two 
methods, the relative density change for dif- 
ferent materials deformed in uniaxial tension 
(austenitic stainless steel) and equibiaxial 
stretching (all others) is presented on Fig. 2. A 
monotonic decrease of the relative density is 
observed, and this decrease is confirmed by the 
microscopical observations which reveal a 
regular distribution of cavities. Figs. 3a and b 
show a typical evolution of the number and size 
of cavities in the austenitic steel considered. A 
simple estimation of the surface fraction of voids 
in case of Fig. 3b gives an estimation, of the 
density change in very good agreement with the 
measurements, using Equation 1. 
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Figure 2 Relative density change against principal strain for 
several materials. 
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Figure 3 Failure of  MnS particles in an austenitic stainless steel after uniaxial straining (R is the rolling direction): (a) 

e I = 0.04, (b) e I = 0.34. 

2.3. Application to the case of a 
dual-phase steel 

The case of a dual-phase steel has been exten- 
sively studied for different linear strain paths 
(minor to major incremental principal strain in 
the plane of the sheet): (a) uniaxial tension 
(Q = de2/de ~ = - 0.5); (b) plane strain 
(Q = 0); and (c) equibiaxial stretching (~ = 1). 

The chemical analysis as well as the mechan- 
ical properties of this material are listed in 
Tables I and II. The relative density changes 
measured are shown in Fig. 4 (together with 
surface microscopical measurements for equibi- 
axial stretching). A great discrepancy between 
the results can be observed and no evolution of 
the damage can be derived. Furthermore, 
measurements on two different samples at the 
same deformation level give two different values 
(Points A and B, C and D). The question of the 
homogeneity of the material on the scale of  the 
measurements arises. These heterogeneities in 
the damage distribution are confirmed by den- 
sity measurements of two neighbouring samples 
(1 x 4cm 2) which gives a value of - A d / d  = 

1.5 x 10 -3. It has to be noticed that this value 
is of the same order as the one involved in void 
growth. Therefore, no conclusion on the damage 
evolution can be drawn from the density 
measurements. Microscopical observations 
reveal the existence of a distribution in size of the 
cavities. The heterogeneities appear to be due to 

T A B  L E I Chemical analysis of  the dual-phase steel 

Element C M n  Cr P S N A1 Si 

Content  36 1105 573 11 10 5 39 32 
(10 -3 %) 

a non-uniform distribution of the biggest 
cavities. 

3. Analysis of the heterogeneities 
in the dual-phase steel 

3.1. Physical aspect of the damage 
The microscopical observations carried out for a 
large number of sites show important differences 
in the volume fraction of voids at the scale of a 
few centimetres. In these different places, the size 
of the cavities is the same, only their number is 
different (Fig. 5). These cavities can be divided 
into three groups according to the nature of the 
particle at the origin of the void: 

(a) Very small cavities associated with man- 
ganese sulphide inclusions (Fig. 6). On this 
figure N denotes the direction normal to the 
plane of the sheet. 

(b) Big cavities associated with alumina 
particles (Fig, 7). 

(c) Associated with second phase particles, 
only rare cavities can be found even for rela- 
tively large deformations (~ = 1, ~3 = -0.57).  
According to different authors [9-12] it seems 
that decohesion around second-phase particles 
happens only at large plastic strain, often 

T A B L E  I I Mechanical properties of  the dual-phase 
steel sheet 

Yield strength Tensile Total Mean 
(0.2%) strength elongation anisotropic 
ay (MPa) a t (MPa) to fracture strain ratio 

A (%) (width to 
thickness 
strain) 

219 453 32.8 1.01 
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Figure 4 Rela t ive  densi ty  change  as a funct ion  of  the thick-  

ness s t ra in  e 3 for a dua l -phase  steel sheet  s t ra ined  under  

different  s t ra in  paths .  

post-necking. As an example, Fig. 8 shows a 
nital-etched sample where the void in the centre 
is due to an alumina particle as in Fig. 7, but no 
cavity appears around the second phase (small 
light island). 

3.2. Statistical analysis of the damage 
Quantitative microscopical observations are 
performed in order to assess the evolution of 
damage during plastic deformation for equibia- 
xial stretching. In order to characterize the cavi- 
ties several parameters are measured, in par- 
ticular the number per unit area and the surface 
fraction of voids. As has been shown for other 
materials [13, 14], initial damage due to rolling is 
present in the dual-phase steel before any plastic 
deformation. For all the strained specimens, 
there are found small cavities (Fig. 9a) and large 
cavities (Fig. 9c). This leads us to classify the 
areal section, S, of cavities in three classes (Table 

Figure 6 M n S  inclus ions  in the  dua l -phase  steel (0  = - I /2,  

g3 = - 0 . 0 5 ) :  R is the rol l ing direct ion.  

III): (a) S < 3#m2; (b) 3#m 2 < S < 15#m2; 
and(c) 15#m 2 < S. 

As mentioned before, the distribution of these 
cavities is not uniform. The material considered 
exhibits two types of heterogeneity that clearly 
appear when examining the two neighbouring 
samples having a relative density difference of 
1.5 x 10 -3. In the first type the material can be 
divided into areas of approximately 4 cm 2 (sam- 
ple size for density measurements) in which the 
distribution of voids is roughly uniform, but 
where the number of cavities per unit volume 
varies from one area to another. The second type 
shows the presence of bands with a high fraction 
of cavities, parallel to the plane of the sheet and 
aligned in the rolling direction. The width of 
these bands is 150 #m and the length can reach 
20 mm. Fig. 5 is a part of this type of heteroge- 
neity. 

Owing to the heterogeneous nature of the 
damage, care must be taken with the statistical 
measurements. In particular, no evolution can 

Figure 5 Hete rogeneous  vo id  d i s t r ibu t ion  in the dua l -phase  
steel (Q = - 1/2, e 3 = - 0.03); R is the rol l ing d i rec t ion  and  

N the no rma l  d i rec t ion  ( transverse) .  
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Figure 7 Decohes ion  of  the ma t r ix  a r o u n d  an  a lumina  par-  
ticle in the dua l -phase  steel (O = - 1/2, e 3 = - 0 . 0 7 ) ;  R is 
the rol l ing direct ion.  



Figure 8 Cavity and second phase particles in the dual-phase 
steel (~o = - 1/2, s 3 = -0.07); R is the rolling direction. 

be deduced from the void parameters. For  in- 
stance, the observations performed on two dif- 
ferent samples at the same deformation stage 
(Q = 1, el = 0.285) give conflicting results. 
Nevertheless, it would not be consistent to per- 
form experiments at a larger scale. In fact, the 
scale of  necking corresponds to the scale of  the 
damage heterogeneities, and thus it is of  major 
importance to account for this phenomenon. 
The purpose of  the following sections is to 
characterize the cavities and their distribution in 
the material. 

3.3. S ize  of  t he  cavi t ies  
In order to simplify, it is assumed that the mat- 
erial contains only one or two classes of  initially 
spherical cavities. An explanation can be given 
for the presence and the heterogeneous distribu- 
tion of  the small sections (S < 3 #m2). Fig. 6 
shows manganese sulphide inclusions in a plane 
normal to the plane of the sheet. If  a metallo- 
graphic plane parallel to the plane of  the sheet 
intersects these inclusions, it would give small 
sections as in Fig. 9a, aligned in the rolling 
direction. In fact, the effect of  the small cavities 
will be neglected since a part of  them can be the 
result of  the mechanical polishing. Moreover, it 
has been shown that sheet formability is rather 
affected by the big cavities [15]. 

Finally, from the results in Table III, it is 
inferred that two classes of  cavity are required in 
order to represent the material. A simple statisti- 
cal calculation carried out on the undeformed 
sample allows one to size the cavities: Class A 
with initial radius RA0 = 4.2#m, and Class B 
with initial radius RB0 = 2 #m. 

3.4. Growth of the cavities 
During plastic deformation the density of  the 
material decreases by nucleation and growth of  
voids. In this model, all cavities are supposed to 
be present before any plastic deformation. This 
assumption is based on the experimental evi- 
dence of  initial damage. Furthermore, among 
numerous nucleation criteria [16-24] it seems 
that large inclusions like alumina in the dual- 
phase steel produce cavities in the first stage of  

Figure 9 Cavities of different sizes in the dual-phase steel: (a) 
small size (Q = 1, ~3 = -0.06); (b) medium size (p = 
- 1/2, e3 = -0.03); (c) large size (# = - 1/2, e3 = -0.03). 
R is the rolling direction. 
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T A B L E  I I I  Statistical parameters of  voids measured in the dual-phase steel at different levels o f  strain ~1 in equi- 
biaxial stretching 

Range of Parameter 
sections measured 
(#m 2) 

gl 

0 0.063 0.102 0.204 0.285 0.285 

< 3 N a (mm-2) * 292 1425 446 506 35 1187 
S (#m2) * 0.31 0.29 0.18 0.24 0.73 0.27 

3 to 15 N, (mm -2) 15,5 75 13.5 12.5 16 12.5 
S (#m 2) 8,2 6.1 6.4 4.1 7.9 9.4 

> 15 N a (mm -2) 4 - - 19 26 - 
S (#m s) 41.6 - 30.4 47.8 - 

"Number of  sections per unit  area. 
*Mean of  the sections. 

the straining. So, the further development will 
only deal with the growth of cavities. 

Rice and Tracey [25] have studied the growth 
of a spherical void in a non-hardening plastic 
matrix. The equations that they have obtained 
have been linearized for simple [8] and complex 
[15] strain paths and can be written 

d R i / R  i = Cde, i - -  K d e  3 (2) 

where Ri and ~i are respectively the radius of the 
void and the plastic deformation imposed to the 
sheet in the i direction, C and K two constants 
equal to 5/3 and 0.64. Cdei is a deviatoric term 
associated with a change in shape at constant 
volume, and Kd~3 a spherical term associated 
with homothetic change in volume. This equa- 
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Figure 10 Theoretical evolution of  the mean of  void sections 
larger than 15 #ms observed in a plane as a function of the 
thickness strain, fl is the ratio of  the volume number  o f  voids 
(n B/n A). RAo and R%, the initial radii of  the spherical cavities, 
are 4.2 and 2. 0 #m respectively. The squares are experimental 
points. 
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tion is assumed to be valid for hardening mat- 
erial, which seems to be correct considering the 
low stress triaxiality in the sheet [26]. Moreover, 
the interaction between the cavities is neglected. 
The damage growth can be expressed [15] by 

Cv = Cv0 exp ( -  3K~;3) (3) 

where Cv and Cv0 are the void volume fractions 
in the strained and reference material. 

In order to verify the validity of the model, 
quantitative metallographic observations are 
simulated. In particular, the mean intercepted 
void section for sections larger than 15#m 2 is 
calculated as a function of the thickness strain 
(Fig. 10). These curves explain why the experi- 
mental mean (Table III) first decreases (e~ = 
0.204) and then increases. 

3.5. Distribution of the cavities 
As has been mentioned before, the studied dual- 
phase sheet can be divided into areas of about 
4 crn 2 in which the distribution of voids differs 
from one area to another. Moreover, some 
bands are observed with a high fraction of cavi- 
ties. However, it has to be noticed that the 
presence of such alignments of cavities does not 
affect the volume fraction of voids in a 4cm 2 
sheet which is the size required for the density 
measurements. Among twelve neighbouring 
samples deformed in uniaxial tension (s3 = 
-0 .03)  the maximum difference between two 
samples is 1.5 x 10 -3.  A quantitative metallo- 
graphic study performed on these two samples 
allows one to find the corresponding surface 
fraction of voids: 2.3 x 10 .3  and 9 x 10 -4. 
These values seem to be in perfect agreement by 
using Equation 1. Nevertheless, this equation is 
not valid for the case of heterogeneous damage. 



Figure 11 Decohesion of the matrix around alumina particles in the dual-phase steel (Q = - 1/2, 83 = - 0.07): (a) ion 
polishing, (b) nital etching, then slight mechanical polishing (the particle has disappeared). R is the rolling direction. 

Fig. 11 shows typical cavities in the dual- 
phase steel with or without an inclusion inside. 
In fact, in Fig. 11 b the inclusion has disappeared 
during polishing. Two absolute values of  dam- 
age measurements can be given by either taking 
away the surface fraction of the inclusion or 
not. However, in the two cases and for homo- 
geneous materials the relative change will give 
the same result with the use of Equation 1 
provided that all measurements are consistent. 
In contrast, for heterogeneous materials the 
relative density difference is due on the one hand 
to the inclusion content, which differs from one 
sample to another even at the same deformation 
stage, and on the other hand to the cavities 
associated with the inclusion. So, the relative 
density change measurements for a hetero- 
geneous material take account of  these two 
phenomena. Thus, a more accurate description 
of  the density change is derived from a model 
that assumes that the material contains spherical 
inclusions of  radius Rin inside cavities of radius 
Ro,, where R~n/R~a = 3. It is assumed that the 
linearized equations for the growth of  voids are 
valid. Before any plastic deformation the relative 
density change between two samples is 

Ad 
- - d -  = (Cv 'o -  Cvo) (1 - k63) 

where k is the density ratio of the inclusion and 
the matrix (0i/Qm) and Cv the void volume frac- 
tion (including inclusions) for the two specimens 
0' and 0. The use of  the damage growth laws 
allows one to obtain the relative density change 
between a strained (subscript 1) and a reference 
(subscript 0) sample: 

Ad 

d 
- Cv, [exp ( -  1.92s3) - k33] 

- Cv0 (1 - k3  3) 

(4) 

A system of three equations with four 
unknowns can be drawn from Equation 4 by 
taking the relative density change from Fig. 4 
(full lines) and by using the relative density dif- 
ference of  1.5 x 10 -3 for the two neighbouring 
samples. The unknowns are Cv .... Cvm~, (the ex- 
tremal void Volume fractions), Cv 0 (the void 
volume fraction of  the reference sample for all 
the measurements of  Fig. 4) and 6 (=  Rin/Roa). 
With the estimations provided by the quan- 
titative metaUographic observations, the best 
compromise to solve the system gives 

Cvm,~ = 2.6 X 10 -3 Cvmm = 0.6 x 10 -3 

Cv0 = 1.3 x 10 3 3 = 0.8 

The 3 value leads to a ratio C,c/C,i of  the surface 
fraction of  voids to the surface fraction of  
inclusions in the as-received material equal to 
0.5, which is comparable with the experimental 
ratio of 0.2 measured in tough pitch copper [27]. 
Subsequently, the minimal and maximal values 
of initial void volume fraction will be taken as 
0.6 • 10 3and2 .6  x 10 -3 . 

4. Prediction of the forming limit 
diagram for isotropic material 
with volume damage 

Though volume damage is often analysed as a 
factor leading to ductile failure, it also has an 
effect leading to unstable plastic flow from the 
earliest deformation stages. This underscores its 
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importance with respect to plastic instability 
phenomena. So, emphasis is given to the influ- 
ence of damage on the forming limit diagram, 
which represents the relationship between limit- 
ing major and minor principal strains of the 
plane of the sheet just before sharp necking. 

4,1. Different ways to introduce damage 
in plastic instability calculations 

Chu [28] analysed different factors giving rise to 
high deformation gradients during the stamping 
of an axially symmetric sheet using a circular 
die. A finite element method was used to exam- 
ine the effects of friction and boundary con- 
ditions. Volume damage was introduced 
through Gurson's plastic flow criterion for 
porous material [29] as well as the flow laws 
associated with this criterion. Chu showed that 
the presence of cavities reduces the formability 
of the material. However, in order to have 
reasonable results, she had to introduce initial 
void volume fraction values of 0.01 to 0.03, and 
these evolve to values of 5 to 10% for stages just 
preceding the necking. It seems that these values 
are much too high as compared with those 
usually measured for sheet metal [39], namely 
10 -3 to 5 x 10 -3. 

The model of Marciniak and Kuczynski 
(M-K) uses a macroscopic description of the 
material [31, 32]. This assumes that after a cer- 
tain amount of deformation, flow becomes 
localized on a defect represented by a narrow 
linear band initially present in the material (Fig. 
12). One supposes that the material has proper- 
ties in this band different from those in the 
homogeneous portion, and this difference is 
modelled by a smaller thickness or section area 
at the band that involves a defect D defined by 

F = 1 D 0 0 - -  = t a / t  b 

where (a)  and (b)  are the zones marked in Fig. 
12. Equilibrium equations show that the stress is 

F i g u r e  1 2  Model of localized necking in the Marciniak-- 
Kuczynski analysis. 
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higher in Zone (b),  and hence plastic flows in 
the two zones differ from each other. 

For the basic Marciniak model, Needleman 
and Triantafyllidis [23] have shown that one can 
consider the following defect types: thickness 
heterogeneity between the homogeneous por- 
tion and the defect, work-hardening hetero- 
geneity, and different flow stresses. They also 
studied the heterogeneity due to a greater vol- 
ume fraction of cavities near the defect. The 
constitutive equations for porous material of 
Gurson [29] were introduced. To obtain theor- 
etical forming limit curves in agreement with 
experimental results, they had to use initial vol- 
ume fraction values of the order of 10 -2 . As in 
the study of Chu [28], these appear to be 
unreasonably high. Nevertheless, the authors 
have concluded that the different shapes in the 
forming limit curves may be attffbuted to the 
growth of cavities. 

Furthermore, Chu and Needleman [34] have 
analysed the influence of cavity nucleation on 
the forming limit calculated as in the previous 
investigation. Various nucleation criteria were 
introduced in the equations, and in particular a 
criterion based on a critical equivalent strain. It 
was assumed that cavities appear at strains 
normally distributed around the critical strain. 
It was shown that when the standard deviation 
of this normal law is small (almost all of the 
cavities appear at the same strain), all the cavi- 
ties are created in the defect and not in the less 
deformed homogeneous portion. This explains 
why the influence of nucleation in this case is 
very destabilizing and leads to rather low form- 
ing limit curves. 

Melander and co-workers have developed a 
theory [9, 27, 35] in which the geometrical model 
is identical to the M-K model. Melander sup- 
posed, however, that the heterogeneity is a 
region of the material where the volume fraction 
of inclusions is greater than the mean value. It is 
a region whose thickness is not necessarily dif- 
ferent from that of the homogeneous portion. 
He assumed the volume fraction of cavities to be 
a function of that of inclusions and of the 
accumulated strain in each of the two regions of 
the material. This function may be identified by 
quantitative microscopy. As in the previous 
studies, he introduced the volume fraction of 
cavities in the equations of his model using Gur- 
son's criterion. For numerical applications, he 



used experimental values of strain-hardening, 
strain rate sensitivity, anisotropy (r) and mean 
initial inclusion concentration. The only 
unknown is the inclusion concentration in the 
defect. He used this as a fitting parameter for the 
agreement of theoretical and experimental 
curves. This led him to conclude that the purer 
the material, the more concentrated must the 
inclusions be in the defect in order for the 
theory to be satisfactorily applicable to different 
materials. 

Damage was introduced in a different manner 
by Jalinier and Schmitt [8, 36]. They considered 
that the volume dilatation is negligible and 
that the constitutive laws of incompressible 
plasticity are valid. Damage was introduced 
through a statistical study in which it was shown 
that plane sections in the material intersect a 
great number of cavities. These sections will 
then have a smaller area than the average 
section. This section defect is then assumed to 
be equivalent to a thickness defect which enables 
them to identify the model to be that of 
Marciniak. However, they have added to the 
defect increase due to heterogeneous plastic 
flow, a defect increase due to cavity growth. 
Through this method, physical parameters 
based on quantitative microscopic observations 
can be introduced. The forming limit curves 
obtained are in good agreement with exper- 
imental curves. Furthermore, their theory has 
explained why thinner sheets give rise to less 
satisfactory deformation, and this is a well- 
known experimental observation. 

A purely statistical method has been pro- 
posed by Van Minh, Sowerby and Duncan [37, 
38] to explain the distribution of experimentally 
observed deformation limits for a given material 
and a given operation. This study is based 
on the hypothesis that Marciniak's theory 
holds for an elementary surface of a sheet in 
which a certain cavity distribution exists. The 
defect amplitude is given by the largest cavity in 
this element. After a probability calculation, it 
is possible to associate with a given stamping 
operation a forming limit obeying a statistical 
distribution law. The authors have shown that 
the mean deformation limit decreases as the cav- 
ity mean size increases, or as the sheet thickness 
decreases. However, this statistical investigation 
introduces very arbitrary parameters to describe 
cavities. 

4.2. Model used in this work 
As for the work of Jalinier and Schmitt [8, 36], 
the plastic instability M-K model [31, 32] for 
isostropic materials, extended for the complex 
strain paths by Barata de Rocha and Jalinier 
[39], is chosen as a basic model. A physical 
explanation of the section defect can be given 
from the concept of damage. For a given distri- 
bution of cavities there exist sections, normal to 
the sheet plane, which intercept more cavities 
than other sections. For a random distribution 
of cavities in a material, a statistical study shows 
the existence of these sections. 

This determination, developed elsewhere [15, 
,tO], is divided into two parts: 

(a) The first consists of calculation for a point 
on the sheet the probability of finding a local 
defect, due to the superimposition of one or 
several cavities, along a line passing through the 
point and normal to the sheet plane (Fig. 13). 
This calculation has been already done for the 
cases of one class of cavities or of two classes of 
cavities [8]. 

(b) The second considers a local defect distri- 
bution and calculates a linear defect Fequivalent 
to the defect of the plastic instability model used 
in the M-K theory (Fig. 14) by obtaining the 
mean of all local defects which belong to an 
approximately linear band. 

The final expression of the defect factor F for 
two classes of cavities (Appendix A) is: 

~ L B  

Figure 13 Model of  the thickness of  a material containing 
two classes of  voids (from [8]). 
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Figure  14 Model of the plane of the sheet. Shaded areas 
correspond to a local defect due to the superimposition of 
one or more cavities. A quasi-linear band joining a maxi- 
mum number of  local defects is represented. This band is a 
weak section of  the sheet where localized plastic flow could 
appear. 

F = 1 - 1 _ ( 1  GuY ~ ~ + 
1 - -  ph 

(5) 

where Cv is the total void volume fraction, ph the 
�9 probability of finding a defect in a narrow quasi- 
linear band joining a maximum local defect. VA 
and vB characterize the size of the cavities: 

(CvA/Cv) 
VA - -  (to/RAo) 

(Cv./CJ 
V a - -  ( t o / R B o )  

where CvA and Cv~ are the void volume fraction 
of Class A and Class B, RA0 and RB0 the initial 
void radius and to the initial sheet thickness. The 
determination of the F value obtained in this 
work is different from the value determined by 
Jalinier and Schmitt [36]. In their analysis, the 
defect that they took into account in calcula- 
tions corresponded to the local defect which 
interacts with other defects of the same 
amplitude. However, this analysis is not valid 
for the case of the big cavities that can be found 
in the dual-phase steel, since only one cavity 
gives much too low an Fvalue; it is impossible to 
find a point defect and the associated probability 
of existence in order to optimize the interaction 
condition. 

Using the damage growth law (Equation 3), 
the initial defect and its evolution can be com- 
puted. Fig. 15 shows how the defect increases for 
various conditions. Since this type of defect is 
determined by a statistical calculation it will be 
called a statistical defect. It is worthy of note 
that the statistical defect can develop for any 
homogeneous damaged material and in any 
direction of the sheet. 

In the present study, it has been seen that the 
dual-phase steel sheet can be divided into areas 
of about 4 cm 2 in which the void volume fraction 
is constant. Hence, the above analysis of statisti- 
cal defects can be applied in each of these areas, 
and obviously the plastic flow localization will 
occur in the area which contains the larger 

t~ 
I 

c~ 

0.015 

0.01 

0,005 

/ / / _ c ~  =c# o = 5 , ,o - ' .  

t:? o = l N . m  

I i I ! ! i | I ! 

0.2 0.4 0.6 0.8 - E: 3 

Figure  15 Evolution of the statistical 
defect with the thickness strain for dif- 
ferent types of damage conditions; t = 
0.7 mm. 
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Figure 16 Influence of the groove length on the thickness 
limit strain for an aluminum alloy (from [41]). 

rolling direction they are called structural 
defects. They can be modelled as shown in Fig. 
17. The amount  and the evolution of  the struc- 
tural F value is calculated taking account of  the 
direction of the band (rolling) according to the 
principal axes (0) and the growth of  cavities 
(Appendix B): 

F = F(RA0, Rs0, 10, to, ~, 6 ,  ~s) (6) 

Neglecting the stress concentration in such cav- 
ity bands it can be shown, using a simple 
criterion of critical spacing between voids [42, 
43] that coalescence in the overall band cannot 
be reached before necking. Moreover ,  the length 
of the band (10 to 20 mm) is large enough so that 
the sheet behaves like an M - K  material. 

defect. The important thing is to notice that the 
scale of these areas is large enough to produce a 
plastic instability. In fact, it can be related to 
experimental work [41] which has consisted in 
making grooves of different lengths but of con- 
stant  F value in an aluminium sheet. The 
influence of the groove length on the limit thick- 
ness strain before flow localization is reproduced 
in Fig. 16. From this curve, the authors have 
concluded that continuous weak regions which 
are larger than about 10t0 can behave like M - K  
grooves. 

The statistical defect is not the only one that 
can be found in dual-phase steel. The cavity 
bands observed in this material are at the origin 
of defects. Since these defects develop only in the 

Rol l ing Direction 
�9 D 

0 o 0 o O o 

o (9 | o 0 

o o o 

o 0 o 0 o 0 
RAo = 4.2 Hm 

Ra0 = 2.0 lam 

l o = 4 2  lam 

Figure 17 Model of a cavity band in the dual-phase steel. 

4.3. Simula t ion  
Calculations of the forming limit strain and 
forming limit diagrams (FLD) are performed 
using the procedure of Barata da Rocha and 
Jalinier [39]. The flow curve of dual-phase steel 
is chosen as 

ae = [a0 + H l n  (~ + ~0)]g m 

where o- e is the flow stress, ~ the effective strain, 
the effective strain rate and a0, H, ~0, m are 

constants. The defect due to damage F is 
introduced instead of the geometrical defect f.  
At each step of the straining the overall defect in 
the material will grow according to two 
phenomena [36]: (a) the increase of the necking 
due to non-uniform plasticity dFv, and (b) the 
increase in defect due to internal damage growth 
dF. dF  v is calculated from the instability model 
and dF  is obtained by differentiating Equations 
5 and 6. 

4.4. Results 
The FLD of dual-phase steel is computed in the 
expansion range assuming that the rolling direc- 
tion is perpendicular to the major principal 
stress axis. Three damage conditions have been 
examined (Fig. 18): 

(a) it is assumed that the overall volume frac- 
tion of voids is the same as in the real material 
but evenly distributed; 

(b) the F LD  is determined in one area in 
which the void volume fraction is maximum; 
and 

(c) the FLD is determined in one area of 
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Figure 18 Forming limit diagram for the dual-phase steel 
under linear strain in the expansion range: (a) with a uniform 
void distribution; (b) with a non-uniform void distribution 
(on the basis of the observations); (c) with a non-uniform 
void distribution superimposed on a cavity band. v, experi- 
mental points, e~ and e~ are the principal strains in the plane 
of the sheet. 

maximum void volume fraction and which con- 
tains a cavity band. 

Curve (c) in Fig. 18, which reflects the real state 
of the material, is in good agreement with the 
experimental points. This result is the more 
interesting as it is obtained without the use of 
fitting parameters. Moreover, it is shown that if 
the cavities were evenly distributed (Curve (a)), 

a o~oh =90"  

0.5 b * * " = 2 5  ~ 

r ,poh= O" 

OA 

\? / / 

-o~ o O . l O . 2  0.3 ~.~ 

Figure 19 Forming limit diagrams for the dual-phase steel 
based on a statistical defect due to internal damage or a 
groove in the rolling direction ( ~  is the inital angle between 
the groove and the direction of the minor principal stress) 

3 3 9 6  

the sheet formability would increase by about 
20%. 

On a given strain path, the forming limit is 
obtained for the groove orientation (0) which 
leads to the minimum calculated limit strain [39]. 
In the case of an isotropic material the FLD 
does not depend on the blank orientation. When 
dual-phase steel is strained along a given strain 
path, necking can occur in two directions if these 
are not superimposed: (a) the most mechanically 
favourable direction where the statistical defect 
develops, and (b) the direction of the structural 
defect (rolling). 

In the second case, although the direction of 
the structural defect is less favourable, necking 
can occur since the resulting defect factor 
F = 1 - D is larger than the statistical defect 
factor. Assuming the structural defect to be due 
to a cavity band, the FLD of the dual-phase steel 
is computed for two orientations of the rolling: 
(a) rolling perpendicular to the major principal 
axis, and (b) rolling parallel to the minor prin- 
cipal axis. 

The two FLDs are not superimposed and the 
maximum difference between these two curves 
reaches 5%. In order to emphasize this aniso- 
tropic phenomenon, a larger structural defect, 
which corresponds to a groove of 20/zm depth 
for 0.7 mm sheet thickness is introduced in the 
computations. The initial angle between the 
groove and the minor principal stress axis is 
called 0Z. During straining plastic flow can 
occur in two directions as mentioned before. As 
Fig. 19 illustrates, the FLDs are very sensitive to 
the groove orientation. In the case of dual-phase 
steel, the structural defect considered seems 
excessive, but for some other materials, the 
defect is realistic being generated by the interac- 
tion of cavity bands, elongated colonies of 
inclusions or grains with similar crystallographic 
orientations and roughnesses. 

The necking direction can be predicted by this 
analysis. For anisotropic materials, some 
theoretical [44, 45] and experimental [46, 47] 
work shows that the critical limit strains are 
achieved for an initial groove orientation 
inclined at an angle 0 r 0. In the case of aniso- 
tropic materials subject to linear strain, the criti- 
cal groove orientation corresponds to an angle 
0 = 0 in the whole expansion range. However, 
in this work, preferred necking orientations 
(0 ~ 0) can be predicted for isotropic materials. 
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Figure 20 Conditions required to initiate necking in the 
direction of  the cavity band (in grey) or in the direction of the 
groove (between the dashed lines). 

Under a given linear strain path, for instance 
Q = 0.75, necking occurs on the statistical 
defect (0 = 0) or on the structural defect O h. If  
the structural defect is a cavity band, it will 
impose a localized plastic flow for 0~ values 
bounded by ___ 20 ~ Fig. 20 shows the conditions 
required for the structural defect to impose a 
localized plastic flow under any linear strain 
path. 

5. Conclusions 
(a) In the present work, emphasis is put on the 

heterogeneous nature of  the void distribution in 
a dual-phase steel. Although this phenomenon 
gives experimental results which must be taken 
with care, it is important to account for it, since 
the scale of the heterogeneities is similar to the 
scale of  necking. 

(b) Two types of  heterogeneity are observed: 
on the one hand, the sheet can be divided into 
areas in which the void volume fraction is 
roughly constant but differs from one area to 
another; on the other hand, the sheet contains 
some bands aligned in the rolling direction 
where the cavities are highly concentrated. 

(c) The scattered relative density change 
measurements are explained by a model based 
on the heterogeneous distribution of  inclusions 
and associated damage. 

(d) A model of  plastic instability for void- 

containing material is developed. This model is 
powerful since it takes the physical aspect of the 
damage into account. It leads to a prediction of 
the FLD in good agreement with experiment.  

(e) It is shown that the heterogeneities 
decrease the formability of  the sheet by about 
20% in comparison with a material which would 
contain the same number of Cavities but evenly 
distributed. 

(f) Preferred orientations of the necking 
direction are due to the structural heterogen- 
eities, and lead to anisotropic forming limit 
diagrams. 
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Appendix A 
Statistical defect calculation 
A material is supposed to contain one class of 
equiaxed cavities modelled by a parallelepiped 
of dimensions DL, D2 and D3 (Fig. 21). Fig. 17 is 
a section of the sheet thickness. Each cavity can 
occupy a position in one of  the v slices of  the 
material, where 

v = t/D 3 

The length L of  each slice is determined by the 
cavity volume fraction of the material: 

Cv = D, /L  

If  one supposes that the cavities occupy discrete 
positions separated by the distance dh, then the 
probability that the slice of  width dh will inter- 
cept one cavity is 

(D,/dh) 
p - - C v  (L/dh) 

:t 
I .  

N 

Iz 

L 

N 

Tf 
J 

Figure 21 Model of  the sheet thickness for one class of  
cavities. 
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The local defect Dp, corresponding to the align- 
ment of x cavities along a line through Point P 
and normal to the sheet plane is expressed by 

Dp = 1 - r p  = xD3 / t  = x / v  

The value of Dp = 0 or Fp = 1 corresponds to 
the case where there is no defect. The probability 
of finding such defect Dp is given by the binomial 
law: 

p(xcavities) = (x  v) Cv~(1 - Cv) ~-x 

Knowing this probability, it is then possible to 
represent a plane of the sheet (Fig. 14). The 
unshaded squares correspond to points without 
defects. The shaded squares represent points for 
which a line normal to the sheet plane and pass- 
ing through them intercepts one or several cavi- 
ties. The defect which leads to the necking will 
start at sections containing the maximum num- 
ber of local defects. In order for the mechanical 
plastic instability model to apply, it will be 
assumed that the defect is quasi-linear. Also, in 
order for the band to be continuous, this must 
pass through squares without defects. 

Various representations identical to that of 
Fig. 14 have been simulated by varying the 
probability p of the existence of a point defect at 
Point P of the sheet. The probability ph of find- 
ing a defect in the quasi-linear band is calculated 
as a function of p: 

ph = _@2 + 4/) ifO < p  < 0.5 

ph = 1 if 0.5 < p  < 1 

The linear defect F can be defined as the sum 
of the average of the local defects affected by the 
probability ph and of 1 (points without defect) 
affected by the probability 1 - ph: 

F . . . . .  ph 
E k)  + (1 - ph) 

After a long but straightforward calculation, we 
obtain 

[ I < F = l - l _ ( l _ C v )  v p h + l -  

This calculation process is the same for two 
classes of cavities. 

Appendix B 
Structural defect calculation 
A section perpendicular to the sheet plane is 
supposed to contain a cavity band with two 
classes of voids regularly aligned in the rolling 
direction, and at an angle ~ to the minor prin- 
cipal axis (Fig. 22). The defect associated with 
the instability process is 

r = 1 -- D = S / ( t l~ )  

where S is the effective area and l~ the spacing 
between two voids. Using the void growth laws, 

d R i / R  i = C d 8  i - K ds3 

and it follows that 

F 1 A B = - -  (Rq, RoA o + Rc~RoBo)/2 tol~, 

@ 

0 

2 

Figure 22 Defect induced by a 
cavity band. R is the rolling direc- 
tion. 
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with 

R~ = R~cos  2 o + R ~ c o s  20  

l, = lo exp ~, {sin ~0o + cos20o 

x exp [2~i( 0 - 1)]} ~12 
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